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INTRODUCTION

The purpose of this program is to develop life prediction models for coated

anisotropic materials used in gas turbine airfoils. In the program, two single

crystal alloys and two coatings are being tested. These include PWA 1480, Alloy

185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive

models are also being developed for these materials to predict the time independent

(plastic) and time dependent (creep) strain histories of the materials in the lab
tests and for actual design conditions. This nonlinear material behavior is

particularly important for high temperature gas turbine applications and is basic to

any life prediction system. This report will highlight some of the accomplishments

of the program this year.

SINGLE CRYSTAL CONSTITUTIVE MODEL

Two separate unified constitutive models for single crystal PWA 1480 have been
formulated and are in the final stages of development. The first model, the

"microscopic model", computes the inelastic quantities on the crystallographic slip

systems. This model achieves the required directional properties as a consequence
of resolving the summed slip system stresses and strains onto the global coordinate

system. The second model, the "macroscopic model", uses global stresses and strains

directly and employs anisotropic tensors operating on global inelastic quantities to
achieve the required directional properties. The two models offer a trade between

accuracy and physical significance and computing time requirements. The microscopic
_odel is more accurate and is more physically significant in its formulation than

ti_e7acroscopic model. However the macroscopic model is more computationally

efficient, because integration of the evolutionary equations is required only for

the six global stress/strain quantities rather than for each of the slip systems.

Cyclic stress/strain data at 871C (160OF) will be used to illustrate the behavior of
the models. Figures l and 2 show test data from uniaxial bars oriented in three

_rystal directions: <OOl>, <lll_, and <Oil >. These three orientations represent the
_treme ends of the possible crystal orientations.
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The tests were conducted under controlled strain rates ranging from 0.001%per
second to 1.0%per second.

The microscopic model models deformation on both the octahedral slip systems and the
cube slip systems. The importance of including both slip systems can be shownby
examining the results of inactivating the cube system terms. The model, thus
_odified, was fit to the <OOl> data and subsequently used to predict the<Ill>
behavior. Figure 3 shows the correlation with the <OOl>data is quite good, but the
prediction for the <Ill> data is poor. The good correlation with the <OOl> data
could have been expected since for a tensile bar in this orientation, only the
octahedral slip systems have nonzero resolved shear stresses. The resolved shear
stress on the cube slip systems is zero for this orientation. In contrast, a
tensile bar oriented in the <Ill> direction has nonzero shear stresses on both the
octahedral and the cube slip systems. Whencube slip terms are included in the
_odel, the correlation with the <Ill> and <OOl>data is quite good as seen in Figure
4. The model constants in this case have been determined to best fit both the <OOl>
and the <Ill> data. The accuracy of the full model is illustrated in Figure 5 by a
prediction of data from a third orientation: the <Oil> orientation. Comparisonwith
the test data in Figure 2 shows the prediction is very good. The maximumdifference
seen between the micro model and test data for all three orientations, for stress
ranges up to 2100 MPa(305 ksi) and over three orders of magnitude of strain rate is
less than 62 MPa(9 ksi).

In the macroscopic model being developed, a single set of evolutionary equations are
written using the global stresses and strains directly (i.e. not resolving them onto
slip systems). The orientation dependenceis achieved by including anisotropic
tensors in the evolutionary equations for both inelastic strain and back stress. If
the anistropic tensor is included only in the equation for inelastic strain, the
best correlation with <OOl>and<Ill> data resulted in a maximumstress error 2.5
times that achieved in the slip system based model. However, as shownin Figure 6,
when the back stress componentsare allowed to evolve anisotropically, correlation
of the <OOl>and <Ill> test data is comparable to that achieved with the slip system
based model. The ability of the macroscopic model to predict other orientations is
currently under investigation.

COATING CONSTITUTIVE MODEL

Five isotropic constitutive models were evaluated based on ability to correlate

isothermal overlay coating behavior during stress relaxation and ability to predict

thermomechanical behavior. The models evaluated were a classical formulation (e.g.
Ref.l), Walker's isotropic formulation (Ref.2), a simplified form of Walker's

isotropic formulation where back stress was assumed equal to zero, the Stowell model

(Ref.3), and Moreno's Simplified Unified Approach (Ref.4).

Zarly evaluation of model correlation ability indicated little differences between

-be models. Additional isothermal cyclic stress relaxation tests were subsequently

conducted to determine whether kinematic terms were necessary. To accomplish this,

5 _inute strain hold initiating at zero stress after unloading was incorporated

into the test history. Experimental results from the test conducted at 649C (120OF)

is presented in Figure 7. The positive relaxation observed during the 5 minute

strain hold indicated that kinematic hardening was necessary to accurately represent
the overlay coating response. As such, the 3 models which do not contain kinematic

i_rJening formulations (i.e. classical, simplified Walker, and Stowell) were dropped
from consideration.
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Correlation of the isothermal stress relaxation information was best accomplished

using the Walker model. The Moreno model as applied was generally unable to
correlate the observed positive relaxation response largely as a result of the

assumed back stress evolution equation:

/k_= Ep_ Gin + _in_Ep

where : _ = back stress increment

Ep = strain hardening slope in uniaxial tensile test

._cin = inelastic strain
_in = inelastic strain increment

Ep = change in Ep (with respect to temperature)

_,breno in his work on Hastelloy X (Ref.4) utilized a less rigorous back stress

formulation which relied on a set of rules. This was considered cumbersome and,

hence, the above formulation was adopted.

Prediction of an out-of-phase overlay coating hysteresis loop by the Walker and

_reno models is presented in Figure 8. Clearly, the Walker model is the more

accurate, but the Simplified Unified Approach does predict the gross behavior and is

also quite easy to apply, since only simple hand calculations are required.

Aluminide diffusion coating isothermal stress relaxation tests are in process.

Because diffusion coatings depend largely on the substrate material, tests are
conducted on 2 thicknesses of PWA 1480 material .13 and .25 mm (.005" and .OlO").

Initially, the overlay constitutive model (i.e. Walker) will be applied to both
thicknesses and each material constant will then be plotted vs. PWA 1480 thickness

_nd extrapolated to zero PWA 1480 thickness to obtain the "effective" coating

material constants.

LIFE PREDICTION TESTS

Tests concentrated on gaining insight to coating/PWA 1480 substrate interactions

during thermomechanical loading conditions. Critical fatigue experiments conducted
on <001> and <Ill> PWA 1480 specimens with either overlay or aluminide coatings have

_hown that thermomechanical fatigue life is significantly influenced by the presence

of a coating, coating structure (overlay or diffusion), substrate orientation, and
strain-temperature-time path. Test results supporting these conclusions are

presented in Figures 9 through 12. All lives are relative to specimen separation
life, except in Figure 12 where coating cracking lives are also provided. Although

not shown, coating cracking lives generally follow the same trends. Isothermal

Fatigue tests were primarily limited to overlay coated <OOl> PWA 1480 and were
designed to provide initial life data for exercising life models. This particular

coating/substrate orientation combination was chosen because it is the most
_nderstood from previous experience and material behavior standpoints.

The remainder of specimen coating/substrate orientation combinations are intended to

obtain anisotropy and coating structure effects.

LIFE PREDICTION MODELS

3_sed on observed speciT,lencracking lives obtained from multiple acetate

_.eplications of each specimen, life must be separated into coating and substrate
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componentssuch as provided in the following equation:

Nsep = Nci + Nsi + Nsp

where: Nci = !lumber of cycles to generate a crack through the
coati ng.

Nsi = Additional cycles for coating crack to penetrate a
small distance into the substrate. Initially
defined as .13 mm(.005").

Nsp = Additional cycles to grow crack to critical size.

Nsep = Specimenseparation life (50% stress range drop).

Initially, simple correlations of overlay coating cracking life (Nci) were
considered: Coffin-Manson, Ostergren, actual tensile hysteresis energy, and another
hysteretic energy approach based upon the concept of effective temperature (Ref.5).
In the latter approach, effective temperature was assumedto be the midcycle
temperature of the loading condition (i.e. (Tmin+Tmax)/2). These four correlations
are presented in Figure 13. In each case, the overlay coating correlating
parameters were determined by analysis using a one-dimensional 2-bar mechanism. The
correlation lines shownin the figure represent a "hand-fit" curve passing through
all the out-of-phase TMFtest conditions and are intended to serve as a reference to
qualitatively judge the correlations. Of the four, the tensile hysteretic energy
model is best able to correlate the lives of the varied test conditions.

P'4A1480 substrate life modeling dependsupon what is considered crack initiation
vs. propagation. The methodology applied in this program initially defines
substrate crack initiation as a crack which has penetrated .13 mm(.005") into the
P'4A1480. Assuming a penny-shapedcrack, this is consistent with a .15 to .25 mm
(.006" to .OlO") surface crack. To verify the relationship between acetate replica
observations and actual substrate cracking, substantial optical and Scanning
Electron Microscopy (SEM)fractography has been conducted. Such investigations have
indicated that overlay coating cracks do not penetrate into the PWA1480 substrate
_uring tests conducted at high temperature. Figure 14 is a schematic of the
_emarkation between temperatures where coating cracks do or do not penetrate into
the PWA 1480.

TI4Fof a coated specimen (or component) is particularly complex because thermal

growth mismatch between coating and substrate introduce biaxial stresses and strains

during thermal cycling. Final model(s) will consider such biaxial conditions and

lore rigorous statistical evaluations of the model(s) will then be performed.

FUTURE

in the coming year, additional cyclic tests are planned to assist in life prediction

_,]Jel development. Also, in Option l of the program, life model development will be

__xtended to airfoil root attachment temperatures, stress levels, and notch stress
concentrations.
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FIGURE 2 EXPERIMENTAL LOOPS IN <011> ORIENTATION AT 871C (1600F) AT STRAIN RATES OF
A) 1.0% PER SEC, B) 0.1% PER SEC, AND C) 0.001% PER SEC
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FIGURE 8 WALKER AND MORENO MODEL PREDICTION OF OUT-OF-PHASE TMF TEST

393



PWA1480 <001>
C = ± .4%

E;

T (F) o

, /<,
80/ 19OO

T (F)

m

<
r,r
p-

C,3

.J

<
L.)

z
<
"I"
U

}

COATING

NONE 1 00 235

PWA273
N,AI

DIFFUSION

PWA286
N,CoCrAIY
OVERLAY

22 4.00 -

73 406

FIGURE 9 THERMAL MECHANICAl. FATIGUE LIFE DEPENDS UPON COATING

m

R

n

m

m

B

D

O"
100

PWA 1 480

PWA273 COATING
<TI 1>

<ol _>

<111>

.o--....__

I I I I ! I111 I I I I I 1111 1
1000 10.0oo

SEPARATION LIFE, CYCLES

FIGURE 10 THERMAL MECHANICAL FATIGUE LIFE DEPENDS UPON SUBSTRATE ORIENTATION

394

ORIGINAL PAGE IS

OF POOR QUALITY



m

PWA1480 <111>

6= -+ .15%

80 o T (F)

cw

800 1900 T (F)

ORIGINAL PAGE IS

OF POOR QUALITY

CCW

BOO 19oo T(F)

COATING

PWA273

N,AI
DFFFUSION

1.0 116 4.75

PvVA286 I 0 I 23 3.85-
N,CoCrAIY

FIGURE 11 TMF LIFE DEPENDS UPON MECHANICAL STRAIN - TEMPERATURE PATH

6

48242 1900i

8O

--454
,850_

CO_TING CRACKS

PWA286 COATED PWA1480

6 = +-.25%

lO38 T °C (°F)
19ooi

<1 1 1>

6
ISOTHERMAL

T °C (°Fl

---..,, j
I IDENTICAL ]

SPECIMEN HYSTERESIS

/ ",,,
>7130

2320 _NO CRACKS OBSERVED,

NSE_ 3532 >7;30

FIGURE 12 TMF LIFE DEPENDS UPON THERMAL CYCLE

395



;RiGINAL

OF

:N ,%

4" 427C (800°F) )421-1038C (800-1900°F, OuT OF-PHASE TMF

427 1038C _800 1900oF_ OTHER THAN OUT.OF P_ASE T'VPF

427-1149C (8OO-2100°F_ OuT-OF-PHASE TMF:

OSTERGREN

1 1
IC 3 _0 4

NC, 'C'r CLES=

3 S

':3IxdENSILE:-_l \ _: HYSTERETIC ENERGY ,o31 TENSILEAPPROAcHNYSTERETICBASEDoNENERGYTEFF

• IX,. _**

b 2x 2x

_32 103 104 105 102 103 104

NC, _CYCLES_ Nci _CYCLES_

J
_35

FIGURE 13 PWA286 OVERLAY COATING CRACKING LIFE CORRELATIONS

396



PWA286 OVERLAY PWA273 ALUMINIDE

n

c I
--4"I

I
I

--" I
_J

I l J I I

427 760 927 1038 1149
_800_ (1400)(17001t 1900t (21001

TEMPERATURE °C (OF)

SPECIMEN
ID

FAILURE

I
I

I_

I I I l l
427 760 927 1038 1149

(8001 11400) (1700) (1900) I2100_

TEMPERATURE °C (OF)

FIGURE 14 SCHEMATIC OF OBSERVED SPECIMEN FAILURES. AT HIGH TEMPERATURES PWA286 COATING
CRACKS DO NOT PENETRATE INTO PWA1480.

397




